12. Beth runs a 10 mile race for charity. Contributors give money based on how far she runs. Everyone contributes $\$ 3$ and a dollar for every mile she runs up to 5 miles. For every mile over 5 she runs, contributors will pay an extra $\$ 2$ a mile. Write the piecewise function that describes this situation.
a) $f(x)=\left\{\begin{array}{l}3+x, x \leq 5 \\ 8+2 x, 5<x \leq 10\end{array}\right.$
b) $f(x)=\left\{\begin{array}{l}3+x, x \leq 5 \\ 8+2(x-5), 5<x \leq 10\end{array}\right.$
c) $f(x)=\left\{\begin{array}{l}3+x, x \leq 5 \\ 2(x-5), 5<x \leq 10\end{array}\right.$
d) $f(x)=\left\{\begin{array}{l}3+x, x \leq 5 \\ 8+2(10-x), 5<x \leq 10\end{array}\right.$
13. In the problem above, what is the maximum amount a contributor can pay Beth (she finishes the race) ?
a) $\$ 10$
b) $\$ 23$
c) $\$ 28$
d) $\$ 18$
14. $f(x)=|6+8 x|$ is equivalent to which piecewise function below?
a) $f(x)=\left\{\begin{array}{l}6+8 x, x \geq-\frac{3}{4} \\ -8 x-6, x<-\frac{3}{4}\end{array}\right.$
b) $f(x)=\left\{\begin{array}{l}6+8 x, x \leq-\frac{3}{4} \\ -8 x-6, x>-\frac{3}{4}\end{array}\right.$
c) $f(x)=\left\{\begin{array}{l}6+8 x, x \leq-\frac{3}{4} \\ 6-8 x, x>-\frac{3}{4}\end{array}\right.$
d) $f(x)=\left\{\begin{array}{l}6+8 x, x \geq-\frac{3}{4} \\ 6-8 x, x<-\frac{3}{4}\end{array}\right.$

Total 5 points

7 Question 7 (No Calculator)

Use the vectors below to answer question 7

$$
\mathbf{u}=-2 \mathbf{i}+13 \mathbf{j}+7 \mathbf{k} \quad \mathbf{v}=-5 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k} \quad \mathbf{w}=3 \mathbf{i}-7 \mathbf{j}-8 \mathbf{k}
$$

Evaluate each expression:
7.1 U X W
$7.2 \mathbf{W} \cdot(\mathbf{u}$ X V$)$

Total 10 points

8 Question 8 (No Calculator)

8.1 Transform the equation $5 x y=12$ from rectangular coordinates to polar coordinates.

Simplify your answer using double angles and leave answer in sine function.
8.2 Plot the point P with polar coordinates $\left(-3, \frac{5 \pi}{6}\right)$ and find other polar coordinate (r, θ) for the same point P for which $r>0$, and $0 \leq \theta \leq 2 \pi$.

Total 10 points

